Abstracts (*Poster Presentation*)

Andrographolide Promotes Osteoblastic Differentiation in MC3T3-E1 Cells and Protects Bone Loss in Estrogen Deficiency Rats

Duangrat Tantikanlayaporn, Ph.D.^{1,2*}, Patsorn Wichit³, Apichart Suksamrarn, Ph.D.⁴, Pawinee Piyachaturawat, Ph.D.³

Abstract

Introduction:	A decline of estrogen in menopause women is accompanied with increases in many
	pro-inflammatory cytokines and osteoporosis. Andrographolide (AP), from Androgra-
	phis paniculata, which has an anti-inflammatory activity, may have potential to alleviate
	osteoporosis during estrogen deficiency.
Objectives:	This study aimed to investigate the osteogenic potential of AP on mouse pre-osteoblastic
	(MC3T3-E1) cells and the protective effect of AP on bone loss in estrogen-deficient rats.
Methods:	The study was conducted into two parts. Firstly, in mouse pre-osteoblastic (MC3T3-E1)
	cells, the osteogenic effect of AP was determined by ALP expression, alizarin red staining,
	and osteoblast-specific gene expressions. Secondly, the protective effect of AP on bone loss
	was evaluated in estrogen-deficient animal model using ovariectomized induced osteope-
	nia rats. The prevention effect was evaluated from bone mineral density (BMD) and bone
	microarchitural indices, by peripheral quantitative computed tomography (pQCT) and bone
	histomorphometry, respectively.
Results:	AP promoted the differentiation of MC3T3-E1 cells into osteoblast by increasing the
	expression and activity of alkaline phosphatase (ALP), an osteoblastic gene-specific marker.
	AP also accelerated bone formation and increased bone structural gene production including
	collagen and osteocalcin. AP also protected bone loss in the estrogen-deficient (ovariecto-
	mized, OVX) rats after 12 weeks of treatment. It protected the loss of bone mineral density,
	and bone microarchitecture deterioration in OVX rats.
Conclusions:	This study provides essential evidence for clinical applications and development of AP
	towards treating osteoporosis in post-menopausal women.
Keywords:	Andrographolide, Bone formation, OVX rats, Osteoblast, Osteoporosis
v	oi.org/10.14456/2022s10737
DOI , https://doi.org/10.17730/2022610/3/	

¹ Division of Cell Biology, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand

² Center of Excellence in Stem Cell Research, Thammasat University, Pathum Thani, Thailand

³ Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand

⁴ Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand

^{*}Corresponding author: Duangrat Tantikanlayaporn, Ph.D., Division of Cell Biology, Faculty of Medicine, Thammasat University, PathumThani, Thailand

Email: dkanlayaporn@gmail.com