Abstracts (Oral Presentation)

The Culture of Human Mesenchymal Stem Cells on Biomimetic 3D-printed Hydroxyapatite Scaffolds for Bone Tissue Repair

Sirikul Manochantr, Ph.D.^{1,2*}, Ladda Meesuk, Ph.D.¹, Chairat Tantrawatpan, Ph.D.^{1,2}, Pakpoom Kheolamai, M.D., Ph.D.^{1,2}, Duangrat Tantikanlayaporn, Ph.D.^{1,2}, Jintamai Suwanprateeb, Ph.D.³

Abstract

Introduction:	Mesenchymal stem cells (MSCs) are multipotent stem cells that have the ability to differentiate into various cell, types including osteoblasts. They are the potential cell source
	for bone repair. MSCs reside in specialized microenvironments that sustain and regulate
	their fate. As the conventional 2D-culture system lacks the key elements for supporting
	bone regeneration, the construction of the microenvironment for cell culture consists of the
	3D-hydroxyapatite (HA) scaffold, and biomimetic calcium phosphate coated 3D-printed
	HA is important.
Objectives:	To characterize the proliferation, adhesion, and osteogenic differentiation of MSCs grown
	with the different 3D-hydroxyapatite scaffolds.
Methods:	MSCs isolated from the bone marrow (BM-MSCs) and umbilical cord (UC-MSCs) were
	cultured on the 3D-HA and coated 3D-HA in the osteoinductive medium. The scanning
	electron microscopy and immunofluorescence staining were used to examine the
	characteristics and the attachment of MSCs to the scaffolds. The proliferation was measured
	using AlamarBlue TM Cell Viability Reagent. The osteogenic differentiation was determined
	by alkaline phosphatase (ALP) activity and the osteogenic gene expressions.
Results:	The BM-MSCs and UC-MSCs cultured on the 3D-HA and coated 3D-HA presented
	similar proliferation to the 2D culture. The MSCs attached to the 3D-HA and coated 3D-HA.
	After induction with osteogenic stimuli, ALP activity and osteogenic gene expression were
	increased compared to the MSCs cultured with a growth medium. Interestingly, MSCs
	grown on coated 3D-HA exhibited a higher ALP activity and osteogenic gene expression
~	than those cultured on the 3D-HA.
Conclusions:	3D-HA serves as compatible material for MSC culture. Moreover, biomimetic coating improves biocompatibility and osteoinductivity.
Keywords:	Mesenchymal stem cell, Hydroxyapatite, Scaffold, Bone
DOI: https://doi.org/10.14456/2022s10713	

¹ Division of Cell Biology, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand

² Center of Excellence in Stem Cell Research, Thammasat University, Pathum Thani, Thailand

³ Biomedical Engineering Research Unit, National Metal and Materials Technology Center (MTEC), Ministry of Science and Technology, Pathum Thani, Thailand

^{*}Corresponding author: Sirikul Manochantr, Ph.D., Division of Cell Biology, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand Email: bsirikul@gmail.com