Abstracts (Poster Presentation)

Inhibition of MicroRNAs Promotes Osteogenic Differentiation Potential of Mesenchymal Stem Cells Derived from Human Placenta

Ladda Meesuk¹, Jintamai Suwanprateeb, Ph.D.², Pakpoom Kheolamai, Ph.D.^{1,3}, Chairat Tantrawatpan, Ph.D.^{1,3}, Duangrat Tantikanlayaporn, Ph.D.^{1,3}, Sirikul Manochantr, Ph.D.^{1,3*}

Abstract

Introduction:	Mesenchymal stem cells (MSCs) are multipotent stem cells that have a regenerative
	function. They can be classified into several cell types, including osteoblasts, adipocytes,
	and chondrocytes. MSCs can be isolated from the placenta with a non-invasive procedure.
	However, the osteogenic differentiation potential of MSCs derived from the placenta
	(PL-MSCs) is not very efficient. The investigation for improving the osteogenic differentia-
	tion potential of PL-MSCs is important for the application of PL-MSCs in the clinical field.
	MicroRNA, including miR-21, miR-27b, miR-29a, and let-7b, plays an important role as
	a post-transcriptional regulator in various processes. However, there is restricted data
	regarding the role of miRNA on osteogenic differentiation of PL-MSCs.
Objectives:	This study is intended to investigate the role of miR-21, miR-27b, miR-29a, and let-7b on
0	the osteogenic differentiation of PL-MSCs.
Methods:	MSCs were isolated from the placenta using enzymatic digestion. The expressions of
	miRNAs during osteogenic induction were measured using quantitative real-time PCR.
	After transfection with anti-miRNA, the osteogenic differentiation potential was determined
	using alkaline phosphatase activity, alizarin red staining, and osteogenic gene expression.
Results:	The results showed that miR-21, miR-27b, miR-29a, and let-7b were down-regulated
	during osteogenic differentiation of PL-MSCs. After the transfection with anti-miRNAs, the
	ALP activity was significantly increased compared with PL-MSCs cultured in an osteogenic
	differentiation medium without anti-miRNAs, especially on days 21 and 28. In addition,
	alizarin red staining and the expression of osteogenic markers were up-regulated when
	compared with the control group.
Conclusions:	The data obtained from this study demonstrated that the inhibition of miR-21, miR-27b,
	miR-29a, and let-7b could enhance the osteogenic differentiation potential of MSCs
	derived from the placenta.
Keywords:	Mesenchymal stem cell MicroRNAs. Osteogenic differentiation. Alkaline phosphatase

Keywords: Mesenchymal stem cell, MicroRNAs, Osteogenic differentiation, Alkaline phosphatase **DOI:** https://doi.org/10.14456/2022s10746

¹ Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand

² Biomedical Engineering Research Unit, National Metal and Materials Technology Center (MTEC), Ministry of Science and Technology, Pathum Thani, Thailand

³ Center of Excellence in Stem Cell Research, Thammasat University, Pathum Thani, Thailand

^{*}Corresponding author: Sirikul Manochantr, Ph.D., Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand

Email: bsirikul@gmail.com