Abstracts (Oral Presentation)

Fucoxanthin Attenuates Hydrogen Peroxide-induced Oxidative Stress in Placenta-derived Mesenchymal Stem Cells through Antioxidant Activity

Gunticha Suwanmanee¹, Chairat Tantrawatpan, Ph.D.^{1,2}, Pakpoom Kheolamai, Ph.D.^{1,2}, Duangrat Tantikanlayaporn, Ph.D.^{1,2}, Sirikul Manochantr, Ph.D.^{1,2*}

Abstract

Introduction: Osteoporosis is a bone disease that results in a loss of bone mass. Oxidative stress promotes

osteoblast apoptosis which leads to decrease bone formation. Fucoxanthin, a carotenoid extracted from brown seaweeds, has antioxidant activity through an increased antioxidant

enzyme expression.

Objectives: This study attempts to explore the cytoprotective effect and antioxidant activity of fucoxan-

thin to promote the cell viability of placenta-derived mesenchymal stem cells (PL-MSCs)

under oxidative stress conditions.

Methods: PL-MSCs were obtained from a pregnant woman after normal delivery. Following the

characterization, PL-MSCs were treated with fucoxanthin (1-5 μ M) and 750 μ M H₂O₂ for 24 h or cultured in both fucoxanthin (1-5 μ M) and H₂O₂ for 24 h. The cell viability, intracellular reactive oxygen species (ROS) production, superoxide dismutase (SOD) activity

and glutathione (GSH) were determined following treatment.

Results: The results showed that treatment and pretreatment with fucoxanthin increased cell viability,

SOD activity, GSH levels of PL-MSCs when compare to control which cultured in 750 μ M H₂O₂ without fucoxanthin for 24 h. While, treatment and pretreatment with fucoxanthin decreased intracellular ROS production of PL-MSCs when compare to control which cultured

in 750 μ M H₂O₂ without fucoxanthin for 24 hours.

Conclusions: This study demonstrated that the treatment and pretreatment with fucoxanthin increased

the viability and increased antioxidant activity of PL-MSCs when compared with the control which cultured in 750 μ M H_2O_2 without fucoxanthin. In addition, the treatment with fucoxanthin decreased intracellular ROS production compared with the control. This study

established that fucoxanthin can protect PL-MSCs against oxidative stress.

Keywords: Fucoxanthin, Mesenchymal stem cells, Placenta, Oxidative stress

DOI: https://doi.org/10.14456/2022s10718

¹ Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand

² Center of Excellence in Stem Cell Research, Thammasat University, Pathum Thani, Thailand

^{*}Corresponding author: Sirikul Manochantr, Ph.D., Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand Email: bsirikul@gmail.com