Abstracts (Oral Presentation)

The Expression of Alkaline Phosphatase in Metformin-treated Umbilical Cord-derived Mesenchymal Stem Cells

Nuengruethai Chadee¹, Jintamai Suwanprateep, Ph.D.², Chairat Tantrawatpan, Ph.D.^{1,3}, Pakpoom Kheolamai, Ph.D.^{1,3}, Duangrat Tantikanlayaporn, Ph.D.^{1,3}, Sirikul Manochantr, Ph.D.^{1,3*}

Abstract

Introduction:	Mesenchymal stem cells (MSCs) have gained more interest in regenerative medicine. The umbilical cord, the alternative source of MSCs, has thus been increasingly recognized as a good MSC source for bone tissue regeneration and bone defect repair. Metformin, an anti-hyperglycemic drug, has been reported that promotes the osteogenic differentiation of BM-MSCs.
Objectives:	This study aims to investigate the viability and the expression of alkaline phosphatase in metformin-treated umbilical cord-derived MSCs (UC-MSCs) during osteogenic differentiation.
Methods:	The UC-MSCs were obtained from pregnant women after normal delivery. After characterization, UC-MSCs were cultured with different metformin concentrations (0 - 160 μ M). The cell viability and alkaline phosphatase (ALP) expression were observed by MTT and alkaline phosphatase activity assay.
Results:	The result showed that metformin at a concentration of 0 - 160 μ M did not decrease the viability of UC-MSCs. Interestingly, the alkaline phosphatase activity of metformin-treated UC-MSCs was significantly increased, compared with untreated UC-MSCs in a dose-dependent manner.
Conclusions:	The data suggested that metformin could enhance the expression of alkaline phosphatase and the osteogenic differentiation ability of MSCs derived from the umbilical cord.
Keywords:	Mesenchymal stem cells, Metformin, Osteogenic differentiation, Umbilical cord, Alkaline phosphatase
DOI: https://doi.org/10.14456/2022s10719	

¹ Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand

² Biomedical Engineering Research Unit, National Metal and Materials Technology Center (MTEC), Ministry of Science and Technology, Pathum Thani, Thailand

³ Center of Excellence in Stem Cell Research, Thammasat University, Pathum Thani, Thailand

^{*}Corresponding author: Sirikul Manochantr, Ph.D., Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand

Email: bsirikul@gmail.com