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Abstract

Introduction:  Our objective is to discover transmission patterns of COVID-19 in the group of 16 countries 
called ASEAN+6 which comprise the ten countries in ASEAN and China, Japan, South 
Korea, Australia, New Zealand, and India.

Methods:  The public dataset from John Hopkins University was used in this work. The concept of 
the effective reproduction number (R) based on the SIR model is used to define the wave of 
infection. K-means clustering, an unsupervised machine learning algorithm, is then applied 
to the time-series data to divide the waves into clusters.

Results:  The data of the confirmed cases and fatalities were separated into four clusters. The results 
from the confirmed cases suggest that the countries in Cluster 1 can handle the spread of 
COVID-19 better than the countries in Cluster 2 for the first 20 days of their waves. The 
results from the fatalities data suggest that there is a pattern of each country’s capacity of 
the public healthcare system and the effectiveness in handling the COVID-19 situation.

Conclusions:  The data seems to support the idea that the clusters of the confirmed cases and deaths may be 
related to each country’s epidemic control measures and the capacity of the public healthcare 
systems. Future research may consider the COVID-19 patterns in this study and compare 
them with the current situation for further analysis.
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Introduction
As a highly transmissible disease, the  

coronavirus disease 2019 (COVID-19) has been 
declared a pandemic since March 20th, 2020.1 The 
most common symptoms for COVID-19 include 
fever, dry cough, and tiredness. Most people will 
experience mild to moderate respiratory illness and 
can recover without special treatment. However, 
older people and those with underlying diseases  
are more likely to develop serious illnesses.2-5  
Assiduously dealing with the virus for over a 
year, the world has accumulated over 183 million 
confirmed cases and over 4 million fatalities at the 
time of writing. The epidemic devastates the public 
healthcare system and creates a worldwide transpor-
tation shutdown, which has a significant impact on 
the global economy.

To analyze the situation, previous works 
used public datasets to examine the information of 
the disease. Multiple research works intended to  
visualize and predict the spreading of COVID-19.6-9 

Some of the publications provided grouping  
strategies for separating the cluster of popula-
tions for further investigation.10-13 Two of the most  
popular methods for the analysis are the SIR model 
and K-means clustering. For time-series analysis, 
the SIR model can be used to construct an infec-
tion graph.8-10 K-means clustering is a well-known  
unsupervised clustering algorithm.11-13 As part of the 
public effort to decode the disease, Johns Hopkins 
University released an up-to-date public dataset to 
the COVID-19 researcher.14 

In this study, our objective is to discover 
transmission patterns of COVID-19 in the group 
of 16 countries called ASEAN+6 which comprise 
the ten countries in ASEAN and China, Japan, 
South Korea, Australia, New Zealand, and India. 
The public dataset from John Hopkins University 
was used in this work.14 The concept of an effective 
reproduction number (R) is used to define the wave 
of infection. K-means clustering, an unsupervised 
machine learning algorithm, is then applied to  
divide the waves into clusters. The remainder of this 
paper is organized as follows. Section II describes 
the methodology including the dataset, definition of 
wave in this study, and pre-processing and K-means 
clustering. In section III, we present the results from 
an unsupervised clustering algorithm for an analysis 
of the transmission patterns of COVID-19 based 

on the number of new cases and deaths. Section IV 
and V describe our interpretation of the results and 
possible extensions and improvements of the study.

Methods
A. COVID-19 Dataset

We use COVID-19 case data from Johns 
Hopkins University,14 which can be accessed via  
a GitHub repository.15 Due to the advantages of  
being up-to-date and comprehensive information, 
this dataset was used for the investigation on  
COVID-19 in multiple publications.6, 7, 16 The data 
has been collected daily since January 22nd, 2020 
from many governmental websites which provide  
an accumulated number of cases, deaths, and  
recovered cases of over 3,000 regions in more 
than 180 countries. Note that the data from some 
countries consist of multiple provinces or states. 
In this study, only the confirmed cases and deaths 
data of ASEAN+6 were used. ASEAN+6 consists 
of the 10 ASEAN countries: Thailand, Malaysia, 
Singapore, Brunei, Philippines, Vietnam, Cambodia, 
Indonesia, Laos, and Myanmar, along with six  
additional countries: China, Japan, South Korea, 
India, Australia, and New Zealand. We refer to the 
country Myanmar by its current name, instead of 
Burma as used in the dataset. ASEAN countries 
were chosen because we hypothesize that common-
alities in cultures and climates may affect how the 
virus spreads and how those countries encounter it. 
The additional six countries were included in this 
investigation so that we can study countries with 
large populations such as China and India, as well 
as countries that are geographically isolated and 
have taken isolation measures, such as New Zealand 
and Australia.

B. Wave of Infection
Following epidemiology practices of  

infectious diseases, we used the effective reproduc-
tion number (R) to track the dynamics of COVID-19 
and define the wave of infection. To observe a grow-
ing epidemic in waves, previous works used this 
number to quantify the virus transmissibility, and 
determine the duration of a wave of infection.17, 18 

There are various ways to estimate R such as basic 
reproduction number,19 nonparametric compartmen-
tal models,20 and the state-space method.21 Recently, 
Arroyo-Marioli et al.22 developed a new method  
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to estimate the effective reproduction number R 
based on SIR model and Kalman Filtering,23 as 
well as providing an interactive online dashboard.24 

Hence, considering the effectiveness and availability 
of data, we decided to use the estimated reproduc-
tion number R to determine the wave of infection 
in this study.

SIR model is one of the simplest compart-
mental models from the concept of the effective 
reproduction number R. It has been used for prevent-
ing, monitoring, as well as forecasting the spread 
of COVID-19.8-10 This model contains three main  
components. First, susceptible (S) is the people 
who are not infected with the disease yet. However, 
they are not immune to the disease and can become 
infected with the disease in the future. Second,  
infected or infectious (I) is the people who are  
infected with the disease and can transmit the disease 
to susceptible people. Last, recovered (R) is the 
people who have recovered from the disease and 
became immune, so they can no longer be infected 
with the disease. The summation of these three 
components represents the total population size. 
There are two more important parameters for 
the SIR model: the daily transmission rate 

(β) and the daily transition rate from infected 
(γ). The effective reproduction number (R) is  
derived from

R = βγ
where β is the rate of daily transmission and γ is the 
rate of daily transition from infected. This number 
can indicate the growth in infection, specifically 
when R > 1.

A new wave of infection is defined in our 
experiment based on two conditions. The first 
condition is that the estimated R is higher than 1 
for 14 consecutive days. We chose 14 days for the 
condition to correspond with the virus’s incubation 
period, which is the interval between exposure and 
symptom development. The second condition is 
that the wave of infection must not intersect with 
other waves. In the case that there is an intersection,  
only the first wave is considered. Following this 
definition, we have identified 29 waves of infection 
for this dataset, as shown in Table 1. According to 
our definition of wave and conditions, no waves for 
Brunei and Laos are recognized. For the clustering 
analysis based on the time-series, only 120 days 
of data from the start of each wave were utilized.

Table 1  Wave of infection as defined by the concept of the effective reproduction number

Country #Wave Start date
Australia 2 2020-03-11, 2020-12-10
Myanmar 1 2020-08-12
Cambodia 1 2021-02-12

China 3 2020-01-23, 2020-05-29, 2020-10-04
India 2 2020-03-15, 2021-02-16

Indonesia 2 2020-03-16, 2020-11-06
Japan 2 2020-02-22, 2020-10-06

Malaysia 2 2020-03-10, 2020-07-16
New Zealand 3 2020-03-23, 2020-08-11, 2020-12-25
Philippines 2 2020-03-15, 2021-01-06
Singapore 3 2020-03-07, 2020-07-11, 2020-12-03

South Korea 2 2020-02-21, 2020-08-09
Thailand 2 2020-03-16, 2020-08-31
Vietnam 2 2020-07-20, 2020-12-21
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C. Data Pre-processing and K-means Clustering
Due to the different population sizes of each 

country, normalization is essential. The original 
dataset expresses the number of cases or deaths in 
the form of accumulated sums. We first subtract the 
numbers of each day by the number from the first 
day of the wave, to eliminate the effect of cases 
accumulated since the beginning of the pandemic. 
Then from those numbers, we derived percentages 
of the increase in the number of cases or deaths 
compared to the previous day, as shown in Equation

                  pi  =
  si -  si-1

                             si-1 
 
where si is the accumulated number of 

cases or deaths at day i. In the case that si-1is equal 
to zero, pi is defined as zero. This approach was 
applied to the analysis and comparison of waves 
between countries.

After obtaining the waves of infection 
in each country, we performed an analysis using  
K-means clustering. K-means clustering is one 
of the most well-known unsupervised learning 
algorithms and is generally used with non time-
series datasets. Prior works used this algorithm  
in several clinical fields such as disease predi-
ction,25, 26 gene expression analysis,27, 28 and 
COVID-19 analysis.11-13 The main idea of the  
algorithm is to solve the problem of classifying  
the given data into k different clusters based on 

certain distance metrics such as Euclidean distance. 
To apply this algorithm to time-series data, it is 
required to use the distance based on the Dynamic 
Time Warping (DTW) algorithm as a distance metric 
between two time-series data points. Dynamic Time 
Warping (DTW) is a similarity measure between 
time-series.29 DTW algorithm allows for matching 
of peaks in the waves of infection by reducing the 
effects of time and shifting distortion between the 
two signals in order to detect similarities between 
their phases and shapes, as described by Algorithm 
1. Using DTW, the distance between two sequences 
can be defined as the minimum Root Mean Square 
Error (RMSE) between the sequences achievable 
by warping. In this context, a sizable difference in 
RMSE implies a greater difference between the two 
waves of infection. Roughly speaking, we use the 
DTW algorithm and K-means clustering to inves-
tigate the patterns of COVID-19.

In this experiment, we explored the number 
of clusters k from 2 to 10 and selected the number 
that minimizes the clustering objective function 
as the main number of clusters. By the nature of 
random initialization for the centroid positions in 
K-means clustering, it could not be guaranteed 
that the algorithm will find the optimal clusters. 
To deal with this initialization issue, we ran 1,000 
separately-initialized trials for each number of  
clusters k and selected the trial with the best  
objective function value.

Algorithm 1  Dynamic Time Warping Algorithm
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 Results
A. Clustering Based on New Cases

According to the evaluation metrics and the 
interpretation from experts, the data of the confirmed 
cases can be divided into four clusters as shown 
in Figure 1. The figure represents the latent space 
of confirmed cases data after we applied Principle 
Component Analysis (PCA) for visualization. Figure 
2 illustrates the characteristics of each cluster. The 
members of each cluster are as follows:

l Cluster 1: The first wave of Australia, 
Burma, China, Indonesia, Japan, New Zealand, 
Malaysia, Singapore, South Korea, Thailand, and 
Vietnam. The second wave of Australia, India,  
Indonesia, Japan, New Zealand, Malaysia, 
P h i l i p p i n e s ,  S i n g a p o r e ,  S o u t h  K o r e a , 
Thailand, and Vietnam. The third wave of China,  
and New Zealand.

l  Cluster 2: The first wave of India, the  
second wave of China, and the third wave of  
Singapore.

l  Cluster 3: The first wave of Cambodia.
l  Cluster 4: The first wave of Philippines.
Two of the four clusters contain only one 

country’s wave each. This is likely due to the  
extreme spikes found in the waves. The first waves 
of Cambodia and Philippines contain days with a 
growth ratio of more than 900 and 2,200 percent, 
respectively, compared to the accumulated sum of 
their previous days. These outlier ratios may have 
placed the data points unusually far from others, 
mostly within a range of 0 to 100 percent, causing the 
clustering algorithm to produce standalone clusters 
for each of them. As for the other two clusters, the 
results suggest that Cluster 1 can handle the spread 
of COVID-19 better than Cluster 2 for the first 20 
days of their waves. Apart from that, only small 
differences can be found between them despite the 
algorithm producing distinct clusters. Therefore, we 
conclude that any patterns in the confirmed cases are 
unclear to our current study, and more investigation 
is required.

Figure 1 The latent space of the confirmed cases data after we applied Principle Component  Analysis (PCA).
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B. Clustering Based on Fatalities
Similar to the results for the confirmed 

cases, the deaths data can be divided into four 
clusters as shown in Figure 3. We illustrated the 
characteristics of each cluster in Figure 4. The  
element of each cluster is as follows:

Once again, we can see one standalone  
cluster out of all four. Interestingly, Clusters 1, 2, 
and 3 seem to represent high, medium, and low  
levels of fatalities from COVID-19, respectively. 
The growth ratio of cluster 1 is higher than 100 
percent for the first 30 days of their waves. We can 
infer that the countries in this cluster took longer 
to handle the COVID-19 situation. In contrast to 
Cluster 1, the growth ratio of Cluster 3 is lower 
than 50 percent for the whole wave, which shows 
the effectiveness of the countries’ adaptations to 
the situation. As for Cluster 2, with the percentage 
change of deaths not exceeding 100 percent, the 
fatality rate seems to be more stable than Cluster 1. 
The last standalone cluster contains the first wave of 
Philippines. It is likely isolated for the same reasons 
as the standalone clusters from the previous section. 

One of the possible interpretations from the results 
of the unsupervised clustering of the fatalities data 
is that Clusters 1, 2, and 3 follow a pattern of each 
country’s capacity of the public healthcare system 
and the effectiveness in handling the COVID-19 
situation.

Discussion 
The results suggest that there are four  

clusters of COVID-19 situations based on informa-
tion about confirmed cases and deaths. These results 
are promising for use in investigating transmission 
patterns of COVID-19 in ASEAN countries. Regard-
ing results of both confirmed cases and deaths, it is 
possible that the patterns are related to the ability 
to handle the COVID-19 spread situation of each 
country. More specifically, the data seems to support 
that the clusters of the confirmed cases could related 
to each country’s epidemic control measures and the 
clusters of the fatalities could related to the capacity 
of the public healthcare systems. This motivates us 
to further investigate the differences between each 
cluster in the future. 

Figure 2  The four clusters derived from the K-means unsupervised clustering algorithm  from the data of 
the confirmed cases. X-axis represents the time since the wave started, from day 1 to day 120. Y-
axis represents the change in percentage of the number of new cases. The red line is the centroid 
of the cluster, and the grey lines are the actual values of each wave in each cluster.
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Figure 3  The latent space of the confirmed deaths data after we applied Principle Component Analysis 
(PCA).

Figure 4  The four clusters derived from the K-means unsupervised clustering algorithm from the data of 
the death cases. X-axis represents the time since the wave started,  from day 1 to day 120. Y-axis 
represents the change in percentage of the number of  death cases. The red line is the centroid of 
the cluster, and the grey lines are the actual values of each wave in each cluster.

Although this analysis gives us impressive 
and interesting results, there are three limitations 
that affect the results of this study. First, there 
were some entries that had lower amounts than the 

previous days, even though they are supposed to 
be non-decreasing due to being cumulative sums. 
Furthermore, data from certain date ranges are 
missing from some countries, leading to incom-



S16 Asian Medical Journal and Alternative Medicine

plete sequences. We suspect that this might have 
been caused by some errors during the collection 
process of the dataset. In the future, we plan to use 
other available datasets to validate this dataset, in 
order to achieve a more reliable dataset. Second, the 
conditions in the definition for waves of infection 
may need to be verified. Although we provided our 
reasons for defining the two conditions as such, we 
cannot guarantee that this definition is appropriate 
for all situations, countries, or timings. It would 
be ideal to survey past definitions and expert  
opinions for a consensus on the definition of waves. 
Last, our use of K-means clustering might have  
produced non-optimal results due to random  
initialization and parameter tuning. To the best of  
our knowledge, running 1,000 trials of random 
initialization is sufficient in practice to obtain 
meaningful and usable results. As for parameter 
tuning, however, we did not perform a complete 
grid search for the optimal combination of hyper-
parameters, so it is possible that we have missed 
the optimal parameters that might have been found 
otherwise. Still, these results should be sufficient 
as a preliminary study to show the effectiveness of 
unsupervised learning for discovering transmission 
patterns of COVID-19.

This paper presents an investigation for the 
transmission patterns of COVID-19 in ASEAN+6 
countries, as discovered by an unsupervised machine 
learning method. We can infer from these results 
the effectiveness of each country in managing the 
spread of COVID-19. In this study, we introduce not 
only a definition for COVID-19 wave of infection, 
but also reveal some patterns among the spread of 
COVID-19 in each ASEAN+6 country based on the 
results of the data-driven analysis. Future research 
may consider the COVID-19 patterns in this study 
and compare them with the current COVID-19  
situation for further analysis. To refine the results of 
this study, we aim to use other available datasets to 
validate this COVID-19 dataset. Alternative wave 
definitions and clustering algorithms need to be 
investigated for more reliable and insightful results. 
Further studies should include deeper investigations 
on the differences between each cluster including 
the external factors and evidence that lead to those 
differences, as well as combining the new cases and 
fatalities for a joint clustering analysis.
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