Potential Thai Herbal Medicine for COVID-19

Authors

  • Arunporn Itharat Department of Applied Thai Traditional Medicine and Center of Excellence in Applied Thai Traditional Medicine, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
  • Vilailak Tiyao Center of Excellence on Thai Traditional Medicine, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
  • Kodchanipha Sutthibut Center of Excellence on Thai Traditional Medicine, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand
  • Neal M. Davies Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada

Keywords:

SARS-CoV-2, COVID19, Thai herbs, Mechanism of action

Abstract

     SARS-CoV-2 is a cause of COVID-19 a contagious respiratory disease, in which there are many signs and symptoms such as fever, dry cough, shortness of breath, muscle ache, and pneumonia. Meanwhile, antiviral drug mechanisms which are being used to treat SARS-CoV-2 with Western drugs can be divided into three groups as follows: increasing acidic conditions by endosomal formation; viral replication; and affinity interaction with ACE-2 receptor via S-protein. Therefore, hydroxychloroquine/chloroquine, lopinavir, remdesivir, favipiravir, and molnupiravir which have been utilized to treat HIV and influenza via inhibiting viral replication and alkalinization could also modulate COVID-19 symptoms. However, antiviral drugs also have limited use in hospitalized and severe COVID-19 cases. The objective of this review is to provide a comprehensive analysis of Thai Herbal Medicine findings suggesting antiviral property potential that natural compounds derived from Thai plants could be further developed or provide mechanistic understanding of current drug treatment of COVID-19. Cinchona bark constituents create an alkaline environment to reduce viral replication and perfusion in cells. Certain medicinal plants which possess antiviral replication and blockage of the affinity binding between S-protein of SARS-CoV-2 and ACE2 receptor include Andrographis paniculata, Boesenbergia rotunda, Zingiber officinale, Phyllanthus amarus, Phylanthus emblica, Glycyrrhiza glabra, and Citrus medica. These plants were summarized for their potential in COVID-19 treatment. Integrating Thai Traditional Medicine principles with contemporary COVID-19 treatment mechanisms would certainly have valuable provide more efficient clinical therapy.

Downloads

Download data is not yet available.

Author Biographies

Vilailak Tiyao, Center of Excellence on Thai Traditional Medicine, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand

She help to review COVID19 characteristic and Mechanism

Rank No 2

Center of Excellence on Thai Traditional Medicine, Faculty of Medicine, Thammasat University, Klongluang, Pathumthani, 12120, Thailand

Kodchanipha Sutthibut, Center of Excellence on Thai Traditional Medicine, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand

Rank No3

She help to review Thai Traditional medicine.

she is postdocteral in Center of Excellence on Thai Traditional Medicine

Neal M. Davies, Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada

Rank no 4

 He prove our English and help to write discussion.

He is Professorship of Bualuang

References

Emergencies preparedness, response Pneumonia of unknown cause-China. ProMED-mail. https://www.who.int/csr/don/05-january-2020-pneumonia-of-unkown-cause-china/en/. Published January 7, 2020. Accessed June 30, 2021.

Bogoch II, Watts A, Thomas-Bachli A, et al. Pneumonia of unknown aetiology in Wuhan, China: Potential for international spread via commercial air travel. Journal of Travel Medicine. 2020;27(2). doi: 10.1093/jtm/taaa008.

Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. The Lancet Infectious Diseases. 2020;20(5):533-534. doi: 10.1016/S1473-3099(20)30120-1.

Sun P, Lu X, Xu C, Sun W, Pan B. Understanding of COVID-19 based on current evidence. Journal of Medical Virology. 2020;92(6):548-551. doi: 10.1002/jmv.25722.

Global Situation by WHO Region Daily Weekly Cases Deaths. https://covid19.who.int/. Published July 4, 2021. Accessed July 4, 2021.

Corona Virus Disease (COVID-19). Thailand Situation. https://ddc.moph.go.th/viralpneumonia/eng/index.php. Published July 4, 2021. Accessed July 4, 2021.

Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 2020;395(10223):497-506. doi:10.1016/S0140-6736(20)30183-5.

Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. New England Journal of Medicine. 2020;382(8):727-733. doi:10.1056/nejmoa2001017.

Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nature Reviews Microbiology. 2021;19(3):141-154. doi: 10.1038/s41579-020-00459-7.

Tseng A, Tolentino L, Mph JS, et al. NEW COVID-19 IN-DEPTH REPORT: Summary of SARS-CoV-2 Novel Variants. https://globalhealth.washington.edu/news/2021/02/08/new-covid-19-literature-situation-report-summary-sars-cov-2-novel-variants. Published 2021. Accessed June 30, 2021.

Planas D, Veyer D, Baidaliuk A, et al. Reduced sensitivity of infectious SARS-CoV-2 variant B.1.617.2 to monoclonal antibodies and sera from convalescent and vaccinated individuals. Biorxiv. 2021. doi: 10.1101/2021.05.26.445838.

Biswas N, Majumder P. Analysis of RNA sequences of 3636 SARS-CoV-2 collected from 55 countries reveals selective sweep of one virus type. Indian Journal of Medical Research. 2020;151(5):450-458. doi: 10.4103/ijmr.IJMR_1125_20.

Davies NG, Jarvis CI, van Zandvoort K, et al. Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7. Nature. 2021;593(7858):270-274. doi: 10.1038/s41586-021-03426-1.

Fiorentini S, Messali S, Zani A, et al. First detection of SARS-CoV-2 spike protein N501 mutation in Italy in August, 2020. Lancet Infect Dis. 2021;21(6):147. doi: 10.1016/S1473-3099(21)00007-4.

Zhou D, Dejnirattisai W, Supasa P, et al. Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera. Cell. 2021;184(9):2348-2361. doi: 10.1016/j.cell.2021.02.037.

Zhang L, Cui Z, Li Q, et al. Comparison of 10 emerging SARS-CoV-2 Variants: infectivity, animal tropism, and antibody neutralization. Research Square. 2021:1-18. doi: 10.21203/rs.3.rs-492659/v1.

Franco LR, Kerr S, Kendall C, et al. COVID-19 in northeast Brazil: first year of the pandemic and uncertainties to come. Rev Saude Publica. 2021;55(35):1-10. doi: 10.11606/s1518-8787.2021055003728.

Singh J, Rahman SA, Ehtesham NZ, Hira S, Hasnain SE. SARS-CoV-2 variants of concern are emerging in India. Nature Medicine. 2021. doi: 10.1038/s41591-021-01397-4.

Zeng Q, Langereis MA, van Vliet ALW, Huizinga EG, de Groot RJ. Structure of Coronavirus Hemagglutinin-Esterase Offers Insight into Corona and Influenza Virus Evolution. PNAS. 2008;105(26):9065-9069. doi: 10.1073/pnas.0800502105.

Fehr AR, Perlman S. Coronaviruses: An overview of their replication and pathogenesis. In: Coronaviruses: Methods and Protocols. Springer New York; 2015:1-23. doi: 10.1007/978-1-4939-2438-7_1.

Lai MMC, Cavanaght D. The molecular biology of coronaviruses. Advance in virus research. 1997;48:1-101.

Lang Y, Li W, Li Z, et al. Coronavirus hemagglutinin-esterase and spike proteins coevolve for functional balance and optimal virion avidity. PNAS. 2020;117(41):25759-25770. doi: 10.1073/pnas.2006299117/-/DCSupplemental.

Huang Y, Yang C, Xu X feng, Xu W, Liu S wen. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacologica Sinica. 2020;41(9):1141-1149. doi: 10.1038/s41401-020-0485-4.

Kahn J, McIntosh K. History and recent advances in coronavirus discovery. The Pediatric Infectious Disease Journal. 2005;24(11):223-227.

Thomas S. The structure of the membrane protein of sars-cov-2 resembles the sugar transporter semisweet. Pathogens and Immunity. 2020;5(1):342-363. doi: 10.20411/pai.v5i1.377.

DeDiego ML, Álvarez E, Almazán F, et al. A Severe Acute Respiratory Syndrome Coronavirus That Lacks the E Gene Is Attenuated In Vitro and In Vivo. Journal of Virology. 2007;81(4):1701-1713. doi: 10.1128/jvi.01467-06.

Cubuk J, Alston JJ, Incicco JJ, et al. The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA. Nature Communications. 2021;12(1). doi: 10.1038/s41467-021-21953-3.

Attaway AH, Scheraga RG, Bhimraj A, Biehl M, Hatipoğ LU. Severe covid-19 pneumonia: Pathogenesis and clinical management. BMJ. 2021;372. doi: 10.1136/bmj.n436.

Asselah T, Durantel D, Pasmant E, Lau G, Schinazi RF. COVID-19: Discovery, diagnostics and drug development. Journal of Hepatology. 2021;74(1):168-184. doi: 10.1016/j.jhep.2020.09.031.

Udwadia ZF, Singh P, Barkate H, et al. Efficacy and safety of favipiravir, an oral RNA-dependent RNA polymerase inhibitor, in mild-to-moderate COVID-19: A randomized, comparative, open-label, multicenter, phase 3 clinical trial. International Journal of Infectious Diseases. 2021;103:62-71. doi: 10.1016/j.ijid.2020.11.142.

Fischer W, Eron Jr JJ, Holman W, et al. Molnupiravir, an Oral Antiviral Treatment for COVID-19. medRxiv preprint. 2021;1-30. doi: 10.1101/2021.06.17.21258639.

Lei ZN, Wu ZX, Dong S, et al. Chloroquine and hydroxychloroquine in the treatment of malaria and repurposing in treating COVID-19. Pharmacology and Therapeutics. 2020;216. doi: 10.1016/j.pharmthera.2020.107672.

Udeinya IJ, Brown N, Shu EN, Udeinya FI, Quakeyie I. Fractions of an antimalarial neem-leaf extract have activities superior to chloroquine, and are gametocytocidal. Annals of Tropical Medicine and Parasitology. 2006;100(1):17-22. doi: 10.1179/136485906X7

Lei ZN, Wu ZX, Dong S, et al. Chloroquine and hydroxychloroquine in the treatment of malaria and repurposing in treating COVID-19. Pharmacology and Therapeutics. 2020;216. doi: 10.1016/j.pharmthera.2020.107672.

Liu J, Cao R, Xu M, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discovery. 2020;6(1). doi: 10.1038/s41421-020-0156-0.

Huang M, Li M, Xiao F, et al. Preliminary evidence from a multicenter prospective observational study of the safety and efficacy of chloroquine for the treatment of COVID-19. Natl Sci Rev. 2020. doi: 10.1093/nsr/nwaa113.

Geleris J, Sun Y, Platt J, et al. Observational Study of Hydroxychloroquine in Hospitalized Patients with Covid-19. New England Journal of Medicine. 2020;382(25):2411-2418. doi: 10.1056/nejmoa2012410.

Foundation of Thai Traditional Medicine and Ayurvedathamrong School, “Sapphakhun Ya” Thai Traditional Medicine Textbook (Paet-SaatSong-Kror conservation issue), Bangkok, vol.1, 3rd ed., 2007;388-422.

Chu CM, Cheng VCC, Hung IFN, et al. Role of lopinavir/ritonavir in the treatment of SARS: Initial virological and clinical findings. Thorax. 2004;59(3):252-256. doi: 10.1136/thorax.2003.012658.

Chandwani A, Shuter J. Lopinavir/ritonavir in the treatment of HIV-1 infection: a review. Ther Clin Risk Manag. 2008;4(5):1023-1033. doi: 10.2147/tcrm.s3285.

Kang CK, Seong MW, Choi SJ, et al. In vitro activity of lopinavir/ritonavir and hydroxychloroquine against severe acute respiratory syndrome coronavirus 2 at concentrations achievable by usual doses. Korean Journal of Internal Medicine. 2020;35(4):782-787. doi: 10.3904/KJIM.2020.157.

Cheenpracha S, Karalai C, Ponglimanont C, Subhadhirasakul S, Tewtrakul S. Anti-HIV-1 protease activity of compounds from Boesenbergia pandurata. Bioorganic and Medicinal Chemistry. 2006;14(6):1710-1714. doi: 10.1016/j.bmc.2005.10.019.

Kanjanasirirat P, Suksatu A, Manopwisedjaroen S, et al. High-content screening of Thai medicinal plants reveals Boesenbergia rotunda extract and its component Panduratin A as anti-SARS-CoV-2 agents. Scientific Reports. 2020;10(1). doi: 10.1038/s41598-020-770

-3.

Tewtrakul S, Itharat A, Rattanasuwan P. Anti-HIV-1 protease- and HIV-1 integrase activities of Thai medicinal plants known as Hua-Khao-Yen. Journal of Ethnopharma-cology. 2006;105(1-2):312-315. doi: 10.1016/j.jep.2005.11.021.

Chandra S, Mondal D, Agrawal KC. HIV-1 protease inhibitor induced oxidative stress suppresses glucose stimulated insulin release: protection with thymoquinone. Exp Biol Med (Maywood). 2009;234(4):442-453. doi: 10.3181/0811-RM-317.

Sirama V, Kokwaro J, Yusuf A. In-Vitro Anthelmintic Bioactivity Study of Eclipta Prostrata L. (Whole Plant) Using Adult Haemonchus Contortus Worms A Case Study of Migori County, Kenya. IOSR Journal of Pharmacy and Biological Sciences. 2014;9(6): 45-53.

Tewtrakul S, Subhadhirasakul S, Cheenpracha S, Karalai C, Tewtrakul S. HIV-1 Protease and HIV-1 Integrase Inhibitory Substances from Eclipta prostrata. Phytother Res. 2007;21:1092-1095.

Mushi NF, Mbwambo ZH, Innocent E, Tewtrakul S. Antibacterial, anti-HIV-1 protease and cytotoxic activities of aqueous ethanolic extracts from Combretum adenogonium Steud. Ex A. Rich (Combretaceae). BMC Complementary and Alternative Medicine. 2012;12. doi: 10.1186/1472-6882-12-163.

Garegnani LI, Madrid E, Meza N. Misleading clinical evidence and systematic reviews on ivermectin for COVID-19. BMJ Evid Based Med. 2021;111678. doi: 10.1136/bmjebm-2021-111678.

Oestereich L, Lüdtke A, Wurr S, Rieger T, Muñoz-Fontela C, Günther S. Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model. Antiviral Research. 2014;105(1):17-21. doi: 10.1016/j.antiviral.2014.02.014.

Fang Q, Wang D. Advanced researches on the inhibition of influenza virus by Favipiravir and Baloxavir. Biosafety and Health. 2020;2(2):64-70. doi: 10.1016/j.bsheal.2020.04.004.

Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proceedings of the Japan Academy Series B: Physical and Biological Sciences. 2017;93(7):449-463. doi: 10.2183/pjab.93.027.

Dabbous HM, Abd-Elsalam S, El-Sayed MH, et al. Efficacy of favipiravir in COVID-19 treatment: a multi-center randomized study. Archives of Virology. 2021;166(3):949-954. doi: 10.1007/s00705-021-04956-9.

Ding Y, Chen L, Wu W, Yang J, Yang Z, Liu S. Andrographolide inhibits influenza A virus-induced inflammation in a murine model through NF-κB and JAK-STAT signaling pathway. Microbes and Infection. 2017;19(12):605-615. doi: 10.1016/j.micinf.2017. 08.009.

Harikrishnan H, Jantan I, Haque MA, Kumolosasi E. Anti-inflammatory effects of Phyllanthus amarus Schum. & Thonn. Through inhibition of NF-ΚB, MAPK, and PI3K-Akt signaling pathways in LPS-induced human macrophages. BMC Complementary and Alternative Medicine. 2018;18(1). doi: 10.1186/s12906-018-2289-3.

Kaushik S, Jangra G, Kundu V, Yadav JP, Kaushik S. Anti-viral activity of Zingiber officinale (Ginger) ingredients against the Chikungunya virus. VirusDisease. 2020;31(3):270-276. doi: 10.1007/s13337-020-00584-0.

Alhajj MS, Qasem MA, Al-Mufarrej SI. Inhibitory Activity of Illicium verum Extracts against Avian Viruses. Advances in Virology. 2020;2020. doi: 10.1155/2020/4594635.

Rasool A, Khan MU, Ali MA, et al. Anti-avian influenza virus H9N2 activity of aqueous extracts of Zingiber officinalis (Ginger) and Allium sativum (Garlic) in chick embryos. Pak J Pharm Sci. 2017;30(4):1341-1344.

Wichian Y, Panthong, Itharat A, Lerdsamran H, Puthavathana P. In vitro influenza A (H1N1) activity of Tiliacora triandra Leaf extracts. The 3rd National Conference in Traditional Medicine (NC-TTM3). 2021;71-76.

Wichian Y. In vitro anti influenza A (H1N1) activity of Benchalokawichian extracts and its plant components. (Master of Science, Faculty of Medicine, Thammasat University). 2020.

Pedrosa MA, Valenzuela R, Garrido-Gil P, et al. Experimental data using candesartan and captopril indicate no double-edged sword effect in COVID-19. Clin Sci (Lond). 2021;135(3):465-481. doi: 10.1042/CS20201511.

Nwachukwu DC, Aneke EI, Obika LF, Nwachukwu NZ. Effects of aqueous extract of Hibiscus sabdariffa on the renin-angiotensin-aldosterone system of Nigerians with mild to moderate essential hypertension: A comparative study with lisinopril. Indian J Pharmacol. 2015;47(5):540-545. doi: 10.4103/0253-7613.165194.

Bayani GFE, Marpaung NLE, Simorangkir DAS, et al. Anti-inflammatory Effects of Hibiscus Sabdariffa Linn. on the IL-1β/IL-1ra Ratio in Plasma and Hippocampus of Overtrained Rats and Correlation with Spatial Memory. Kobe J Med Sci. 2018;64(2):73-83.

Wintachai P, Kaur P, Lee RCH, et al. Activity of andrographolide against chikungunya virus infection. Scientific Reports. 2015;5. doi: 10.1038/srep14179.

Chen J-X, Xue H-J, Ye W-C, et al. Activity of andrographolide and its derivatives against influenza virus in vivo and in vitro. Biol Pharm Bull. 2009;32(8):1385-1391.

Uttekar MM, Das T, Pawar RS, et al. Anti-HIV activity of semisynthetic derivatives of andrographolide and computational study of HIV-1 gp120 protein binding. European Journal of Medicinal Chemistry. 2012;56:368-374. doi: 10.1016/j.ejmech.2012.07.030.

Panraksa P, Ramphan S, Khongwichit S, Smith DR. Activity of andrographolide against dengue virus. Antiviral Research. 2017;139:69-78. doi: 10.1016/j.antiviral.2016.12.014.

Seubsasana S, Pientong C, Ekalaksananan T, Thongchai S, Aromdee C. A Potential Andrographolide Analogue against the Replication of Herpes Simplex Virus Type 1 in Vero Cells. Medicinal Chemistry. 2011;7(3):237-244. doi: 10.2174/157340611795564268.

Hiremath S, Kumar HDV, Nandan M, et al. In silico docking analysis revealed the potential of phytochemicals present in Phyllanthus amarus and Andrographis paniculata, used in Ayurveda medicine in inhibiting SARS-CoV-2. 3 Biotech. 2021;11(2). doi: 10.1007/s1320

-020-02578-7.

Sa-ngiamsuntorn K, Suksatu A, Pewkliang Y, et al. Anti-SARS-CoV-2 Activity of Andrographis paniculata Extract and Its Major Component Andrographolide in Human Lung Epithelial Cells and Cytotoxicity Evaluation in Major Organ Cell Representatives. Journal of Natural Products. 2021;84(4):1261-1270. doi: 10.1021/acs.jnatprod.0c01324.

Benjaponpithak A, Visithanon K, Sawaengtham T, Thaneerat T, Wanaratna K. Short Communication on Use of Andrographis Herb (FA THALAI CHON) for the Treatment of COVID-19 Patients. Journal of Thai Traditional & Alternative Medicine. 2021;19(1):229-233.

Eng-Chong T, Yean-Kee L, Chin-Fei C, et al. Boesenbergia rotunda: From ethnomedicine to drug discovery. Evidence-based Complementary and Alternative Medicine. 2012;2012. doi: 10.1155/2012/473637.

Suknasang S, Teethaisong Y, Kabkhunthod S, Eumkeb G. Boesenbergia rotunda extract inhibits β-lactam-resistant Staphylococcus aureus probably by destruction of cytoplasmic membrane. Thai Journal of Pharmaceutical Sciences. 2017;41:125-128.

Haridas M, Sasidhar V, Nath P, Abhithaj J, Sabu A, Rammanohar P. Compounds of Citrus medica and Zingiber officinale for COVID-19 inhibition: in silico evidence for cues from Ayurveda. Future Journal of Pharmaceutical Sciences. 2021;7(1). doi: 10.1186/s43094-020-00171-6.

Chang JS, Wang KC, Yeh CF, Shieh DE, Chiang LC. Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J Ethnopharmacol. 2013;145(1):146-151. doi: 10.1016/j.jep.2012.10.043.

Chakotiya AS, Narula A,Sharma RK. Efficacy of methanol extract of Zingiber officinale rhizome against acute pneumonia caused by Pseudomonas aeruginosa. J Lung Health & Dis. 2018;2(1):2-8.

Kuropakornpong P, Itharat A, Panthong S, Sireeratawong S, Ooraikul B. In Vitro and In Vivo Anti-Inflammatory Activities of Benjakul: A Potential Medicinal Product from Thai Traditional Medicine. Evid Based Complement Alternat Med. 2020;2020:9760948. doi: 10.1155/2020/9760948.

Sarin B, Verma N, Martín JP, Mohanty A. An overview of important ethnomedicinal herbs of phyllanthus species: Present status and future prospects. The Scientific World Journal. 2014;2014. doi: 10.1155/2014/839172.

Yeo SG, Song JH, Hong EH, et al. Antiviral effects of Phyllanthus urinaria containing corilagin against human enterovirus 71 and Coxsackievirus A16 in vitro. Archives of Pharmacal Research. 2015;38(2):193-202. doi: 10.1007/s12272-014-0390-9.

Notka F, Meier G, Wagner R. Concerted inhibitory activities of Phyllanthus amarus on HIV replication in vitro and ex vivo. Antiviral Res. 2004;64(2):93-102. doi: 10.1016/j.antiviral.2004.06.010.

Pandey K, Lokhande KB, Swamy KV, Nagar S, Dake M. In Silico Exploration of Phytoconstituents from Phyllanthus emblica and Aegle marmelos as Potential Therapeutics Against SARS-CoV-2 RdRp. Bioinformatics and Biology Insights. 2021;15. doi: 10.1177/11779322211027403.

Mishra NN, Kesharwani A, Agarwal A, Polachira SK, Nair R, Gupta SK. Herbal Gel Formulation Developed for Anti-Human Immunodeficiency Virus (HIV)-1 Activity Also Inhibits In Vitro HSV-2 Infection. Viruses. 2018;10(11):580. doi: 10.3390/v10110580.

Zhang Y, Fan Q, Fan Y, Liu T. A review of antiviral research on Tibetan medicine Triphala. EC Neurology SI. 2021;2:195-205.

Lv JJ, Yu S, Xin Y, et al. Anti-viral and cytotoxic norbisabolane sesquiterpenoid glycosides from Phyllanthus emblica and their absolute configurations. Phytochemistry. 2015;117:123-134. doi: 10.1016/j.phytochem.2015.06.001.

Ho TY, Wu SL, Chen JC, Li CC, Hsiang CY. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res. 2007;74(2):92-101. doi: 10.1016/j.antiviral.2006.04.014.

Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet. 2003;361(9374):2045-2046. doi: 10.1016/s0140-6736(03)13615-x.

van de Sand L, Bormann M, Alt M, et al. Glycyrrhizin Effectively Inhibits SARS-CoV-2 Replication by Inhibiting the Viral Main Protease. Viruses. 2021;13(4):609. doi: 10.3390/v13040609.

Li F, Liu B, Li T, et al. Review of Constituents and Biological Activities of Triterpene Saponins from Glycyrrhizae Radix et Rhizoma and Its Solubilization Characteristics. Molecules. 2020;25(17):3904. doi: 10.3390/molecules25173904.

Chakotiya AS, Sharma RK. Phytoconstituents of zingiber officinale targeting host-viral protein interaction at entry point of sars-COV-2: A molecular docking study. Defence Life Science Journal. 2020;5(4):268-277. doi: 10.14429/dlsj.5.15718.

Downloads

Published

2021-10-29

How to Cite

[1]
Itharat, A., Tiyao, V., Sutthibut, K. and Davies, N.M. 2021. Potential Thai Herbal Medicine for COVID-19. Asian Medical Journal and Alternative Medicine. 21, - (Oct. 2021), S58-S73.