Role of Digital Health in FGIDs, A Mini Review
Keywords:
Functional GI disorders, FGIDs, digital healthAbstract
Treating functional GI disorders (FGIDs) caused by abnormal gut-brain interactions requires an understanding of individual GI pathophysiology as well as the patient’s behaviors. Many physicians frequently struggle to manage these patients due to a lack of knowledge regarding the patient’s pathophysiology and behaviors. Many digital tools for collecting and recording patients’ health information, which also include patient communication, are available to assist the physician in better understanding the patient. The purpose of this review is to assess how digital health can help FGIDs treatment and the interpretation of GI physiology testing.
Downloads
References
Pathipati MP, Shah ED, Kuo B, Staller KD. Digital health for functional gastrointestinal disorders. Neurogastroenterol Motil. 2023;35(1):e14296. doi:10.1111/nmo.14296.
Stone AA, Shiffman S, Schwartz JE, Broderick JE, Hufford MR. Patient compliance with paper and electronic diaries. Control Clin Trials. 2003;24(2):182-199. doi:10.1016/s01972456(02)00320-3.
Sharma A, Harrington RA, McClellan MB, et al. Using digital health technology to better generate evidence and deliver evidence-based care. J Am Coll Cardiol. 2018;71(23):2680-2690. doi:10.1016/j.jacc.2018.03.523.
Fatehi F, Samadbeik M, Kazemi A. What is Digital Health? Review of Definitions. Stud Health Technol Inform. 2020;275:67-71. doi:10.3233/SHTI200696.
Santos R, Haack HG, Maddalena D, Hansen RD, Kellow JE. Evaluation of artificial neural networks in the classification of primary oesophageal dysmotility. Scand J Gastroenterol. 2006;41(3):257-263. doi:10.1080/00365520500234030.
Kou W, Galal GO, Klug MW, et al. Deep learning-based artificial intelligence model for identifying swallow types in esophageal high-resolution manometry. Neurogastroenterol Motil. 2022;34(7):e14290. doi:10.1111/nmo.14290.
Wang Z, Hou M, Yan L, Dai Y, Yin Y, Liu X. Deep learning for tracing esophageal motility function over time. Comput Methods Programs Biomed. 2021;207(106212):106212. doi:10.1016/j.cmpb.2021.106212.
Kou W, Carlson DA, Baumann AJ, et al. A multi-stage machine learning model for diagnosis of esophageal manometry. Artif Intell Med. 2022;124(102233):102233. doi:10.1016/j.artmed.2021.102233.
Kou W, Carlson DA, Baumann AJ, et al. A deep-learning-based unsupervised model on esophageal manometry using variational autoencoder. Artif Intell Med. 2021;112(102006):102006. doi:10.1016/j.artmed.2020.102006.
Jell A, Kuttler C, Ostler D, Hüser N. How to cope with big data in functional analysis of the esophagus. Visc Med. 2020;36(6):439-442. doi:10.1159/000511931.
Jones CA, Hoffman MR, Lin L, Abdelhalim S, Jiang JJ, McCulloch TM. Identification of swallowing disorders in early and mid-stage Parkinson’s disease using pattern recognition of pharyngeal high-resolution manometry data. Neurogastroenterol Motil. 2018;30(4):e13236. doi:10.1111/nmo.13236.
Agrusa AS, Gharibans AA, Allegra AA, Kunkel DC, Coleman TP. A deep convolutional neural network approach to classify normal and abnormal gastric slow wave initiation from the high resolution electrogastrogram. IEEE Trans Biomed Eng. 2020;67(3):854-867. doi:10.1109/TBME.2019.2922235.
Rogers B, Samanta S, Ghobadi K, et al. Artificial intelligence automates and augments baseline impedance measurements from pH-impedance studies in gastroesophageal reflux disease. J Gastroenterol. 2021;56(1):34-41. doi:10.1007/s00535-020-01743-2.
Wong MW, Rogers BD, Liu MX, Lei WY, Liu TT, Yi CH, Hung JS, Liang SW, Tseng CW, Wang JH, Wu PA, Chen CL. Application of Artificial Intelligence in Measuring Novel pH-Impedance Metrics for Optimal Diagnosis of GERD. Diagnostics (Basel). 2023;13(5):960. doi: 10.3390/diagnostics13050960.
Zifan A, Sun C, Gourcerol G, Leroi AM, Mittal RK. Endoflip vs high-definition manometry in the assessment of fecal incontinence: A data-driven unsupervised comparison. Neurogastroenterol Motil. 2018;30(12):e13462. doi:10.1111/nmo.13462.
Carlson DA, Kou W, Rooney KP, et al. Achalasia subtypes can be identified with functional luminal imaging probe (FLIP) panometry using a supervised machine learning process. Neurogastroenterol Motil. 2021;33(3):e13932. doi:10.1111/nmo.13932.
Visaggi P, de Bortoli N, Barberio B, et al. Artificial Intelligence in the Diagnosis of Upper Gastrointestinal Diseases. J Clin Gastroenterol. 2022;56(1):23-35. doi:10.1097/MCG.0000000000001629.
Ruffle JK, Tinkler L, Emmett C, et al. Constipation Predominant Irritable Bowel Syndrome and Functional Constipation Are Not Discrete Disorders: A Machine Learning Approach. Am J Gastroenterol. 2021;116(1):142-51. doi:10.14309/ajg.0000000000000816.
Vilarino F, Spyridonos P, Deiorio F, Vitria J, Azpiroz F, Radeva P. Intestinal motility assessment with video capsule endoscopy: automatic annotation of phasic intestinal contractions. IEEE Trans Med Imaging. 2010;29(2):246-59. doi:10.1109/TMI.2009.2020753.
Rattanachaisit P, Poovongsaroj S, Patcharatrakul T, Gonlachanvit S, Vateekul P. Sa412 ABDOMINAL RADIOGRAPHY WITH ARTIFICIAL INTELLIGENCE FOR DIAGNOSIS OF DYSSYNERGIC DEFECATION (DD). Gastroenterology. 2021;160(6):S-498-S-499. doi:10.1016/s0016-5085(21)01894-1.
Du X, Allwood G, Webberley KM, Inderjeeth AJ, Osseiran A, Marshall BJ. Noninvasive Diagnosis of Irritable Bowel Syndrome via Bowel Sound Features: Proof of Concept. Clin Transl Gastroenterol. 2019;10(3):e00017. doi: 10.14309/ctg.0000000000000017.
Inderjeeth AJ, Webberley KM, Muir J, Marshall BJ. The potential of computerised analysis of bowel sounds for diagnosis of gastrointestinal conditions: a systematic review. Syst Rev. 2018;7(1):124. doi:10.1186/s13643-018-0789-3.
Vulpoi RA, Luca M, Ciobanu A, Olteanu A, Bărboi O, Iov DE, Nichita L, Ciortescu I, Cijevschi Prelipcean C, Ștefănescu G, Mihai C, Drug VL. The Potential Use of Artificial Intelligence in Irritable Bowel Syndrome Management. Diagnostics (Basel). 2023;13(21):3336. doi:10.3390/diagnostics13213336.
Tong HL, Quiroz JC, Kocaballi AB, et al. Personalized mobile technologies for lifestyle behavior change: A systematic review, meta-analysis, and meta-regression. Prev Med. 2021;148(106532):106532. doi:10.1016/j.ypmed.2021.106532.
Weerts ZZRM, Heinen KGE, Masclee AAM, et al. Correction: Smart data collection for the assessment of treatment effects in irritable bowel syndrome: Observational study. JMIR MHealth UHealth. 2021;9(2):e27998. doi:10.2196/27998.
Venugopal LS, Musbahi A, Shanmugam V, Gopinath B. A systematic review of smartphone apps for gastro-oesophageal reflux disease: the need for regulation and medical professional involvement. MHealth. 2021;7:56. doi:10.21037/mhealth-20-126.
Beckers AB, Snijkers JTW, Weerts ZZRM, et al. Digital instruments for reporting of gastrointestinal symptoms in clinical trials: Comparison of end-of-day diaries versus the experience sampling method. JMIR Form Res. 2021;5(11):e31678. doi:10.2196/31678.
Zia J, Schroeder J, Munson S, et al. Feasibility and usability pilot study of a novel irritable bowel syndrome food and gastrointestinal symptom journal smartphone app. Clin Transl Gastroenterol. 2016;7(3):e147. doi:10.1038/ctg.2016.9.
Rafferty AJ, Hall R, Johnston CS. A novel mobile app (Heali) for disease treatment in participants with irritable bowel syndrome: Randomized controlled pilot trial. J Med Internet Res. 2021;23(3):e24134. doi:10.2196/24134.
Chan Y, So SHW, Mak ADP, Siah KTH, Chan W, Wu JCY. The temporal relationship of daily life stress, emotions, and bowel symptoms in irritable bowel syndrome-Diarrhea subtype: A smartphone-based experience sampling study. Neurogastroenterol Motil. 2019;31(3):e13514. doi:10.1111/nmo.13514.
Hunt M, Miguez S, Dukas B, Onwude O, White S. Efficacy of Zemedy, a mobile digital therapeutic for the self-management of irritable bowel syndrome: Crossover randomized controlled trial. JMIR MHealth UHealth. 2021;9(5):e26152. doi:10.2196/26152.
Ankersen DV, Weimers P, Bennedsen M, et al. Long-term effects of a web-based low-FODMAP diet versus probiotic treatment for irritable bowel syndrome, including shotgun analyses of Microbiota: Randomized, double-crossover clinical trial. J Med Internet Res. 2021;23(12):e30291. doi:10.2196/30291.
Sebaratnam G, Karulkar N, Calder S, et al. Standardized system and App for continuous patient symptom logging in gastroduodenal disorders: Design, implementation, and validation. Neurogastroenterol Motil. 2022;34(8):e14331. doi:10.1111/nmo.14331.
Shapiro A, Bradshaw B, Landes S, et al. A novel digital approach to describe real world outcomes among patients with constipation. NPJ Digit Med. 2021;4(1):27. doi:10.1038/s41746-021-00391-x.
Hamaguchi T, Tayama J, Suzuki M, et al. Correction: The effects of locomotor activity on gastrointestinal symptoms of irritable bowel syndrome among younger people: An observational study. PLoS One. 2020;15(12):e0244465. doi:10.1371/journal.pone.0244465.
Helsel BC, Williams JE, Lawson K, Liang J, Markowitz J. Telemedicine and Mobile Health Technology Are Effective in the Management of Digestive Diseases: A Systematic Review. Dig Dis Sci. 2018;63(6):1392-408.
Lackner JM, Jaccard J, Keefer L, et al. Improvement in gastrointestinal symptoms after cognitive behavior therapy for refractory irritable bowel syndrome. Gastroenterology. 2018;155(1):47-57. doi:10.1053/j.gastro.2018.03.063.
Hasan SS, Pearson JS, Morris J, Whorwell PJ. SKYPE HYPNOTHERAPY FOR IRRITABLE BOWEL SYNDROME: Effectiveness and comparison with face-to-face treatment. Int J Clin Exp Hypn. 2019;67(1):69-80. doi: 10.1080/00207144.2019.1553766.
Halpert A. Irritable bowel syndrome: Patientprovider interaction and patient education. J Clin Med. 2018;7(1):3. doi:10.3390/jcm7010003.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Asian Medical Journal and Alternative Medicine
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.